Coulomb Drag of Electrons for Bicyclists.

A. G. Yashenkin PNPI and SPbSU

Outline.

Constituents of the Theory.
The Essence of the Coulomb Drag Effect.
Detailing the Effect.
Extensions and Exotics.
Conclusion.

1. Constituents of the Theory: Diagramatics.
$\xrightarrow[(k, \omega)]{(r, t)}\left(r^{\prime}, t^{\prime}\right)$

Electron Propagator

$$
\begin{array}{r}
G\left(r-r^{\prime}, t-t^{\prime}\right)=-i\left\langle\hat{T}\left(\psi_{H}(r, t) \psi_{H}^{\dagger}\left(r^{\prime}, t^{\prime}\right)\right)\right\rangle \\
\psi_{H}(r, t)=e^{i H t} \psi(r) e^{-i H t}, \quad H=H_{0}+H_{i n t}
\end{array}
$$

$$
v_{q}=\frac{2 \pi \mathrm{e}^{2}}{q} \quad \rightarrow \quad U_{q}(\omega) \propto(q+\varkappa)^{-1} \propto e^{-\varkappa q} / r
$$

Coulomb Interaction

$$
\propto\left(\omega-\omega_{p l}\right)^{-1} \quad \omega>\boldsymbol{v}_{F} q
$$

Impurities
Gaussian averaging over random configurations

1. Constituents of the Theory: Diffusion and Interference.

Bloch Theorem: $\quad \varepsilon_{0}(\mathrm{k}) \rightarrow \varepsilon(\mathrm{k}) \quad l$ - Mean Free Path

Classical Drude formula:

$$
\sigma_{D}=\frac{n e^{2} \tau}{m}
$$

Why it works? $\quad \lambda_{F} \ll l$

Ordinary Path \rightarrow
$\left.\langle | A_{1}+\left.A_{2}\right|^{2}\right\rangle_{\text {traj }} \approx 2\left|A_{1}\right|^{2}$
Classical Drude formula:

Einstein relation:

$$
\sigma_{D} \propto e^{2} D \nu
$$

D - Diffusion coefficient

Closed Path \rightarrow
$\left.\langle | \boldsymbol{A}_{1}+\left.\boldsymbol{A}_{2}\right|^{2}\right\rangle_{\text {traj }} \approx 4\left|\boldsymbol{A}_{1}\right|^{2}$
Quantum Interference

1. Constituents of the Theory (Cont'd)

Diffuson (diffusion)
$D \propto \frac{1}{D q^{2}-i \omega}$
Diffusive vs Ballistic:

Cooperon (interference)

$$
C \propto \frac{1}{D Q^{2}-i \omega+\tau_{\phi}^{-1}}
$$

$\tau_{\varphi}\left(l_{\varphi}\right)$ - Dephasing Time (Length)

$$
l \ll l_{\varphi}
$$

FTD: connecting susceptibilities and correlators. Kubo formula.

$$
\begin{array}{ccc}
\mathrm{m}=\hat{\chi} \mathrm{h}, & \hat{C}_{m m}=\langle\mathrm{m}, \mathrm{~m}\rangle: & \hat{\chi} \propto \hat{C}_{m m} \\
\mathrm{~J}=\hat{\sigma} \mathrm{E}, & \hat{C}_{J J}=\left\langle\mathrm{J}_{\mathrm{x}}, \mathrm{~J}_{\mathrm{x}}\right\rangle: & \hat{\sigma} \propto \hat{C}_{J J}
\end{array}
$$

1. Constituents of the Theory (Cont'd)

Diffuson (diffusion)
$D \propto \frac{1}{D q^{2}-i \omega}$
Diffusive vs Ballistic:

Cooperon (interference)

$$
C \propto \frac{1}{D Q^{2}-i \omega+\tau_{\phi}^{-1}}
$$

$\tau_{\varphi}\left(l_{\varphi}\right)$ - Dephasing Time (Length)

$$
l \ll l_{\varphi}
$$

FTD: connecting susceptibilities and correlators. Kubo formula.

$$
\begin{array}{cc}
\mathrm{m}=\hat{\chi} \mathrm{h}, & \hat{C}_{m m}=\langle\mathrm{m}, \mathrm{~m}\rangle: \\
\mathrm{J}=\hat{\sigma} \mathrm{E}, & \hat{\chi} \propto \hat{C}_{m m} \\
\hat{C}_{J J}=\left\langle\mathrm{J}_{\mathrm{x}}, \mathrm{~J}_{\mathrm{x}}\right\rangle: & \hat{\sigma} \propto \hat{C}_{J J}
\end{array}
$$

1. Constituents of the Theory (Cont'd)

Diffuson (diffusion)

$$
D \propto \frac{1}{D q^{2}-i \omega}
$$

Diffusive vs Ballistic:

Cooperon (interference)

$$
C \propto \frac{1}{D Q^{2}-i \omega+\tau_{\phi}^{-1}}
$$

$\tau_{\varphi}\left(l_{\varphi}\right)$ - Dephasing Time (Length)

$$
l \ll l_{\varphi}
$$

FTD: connecting susceptibilities and correlators. Kubo formula.
$\mathrm{m}=\hat{\chi} \mathrm{h}$,
$\hat{C}_{m m}=\langle\mathrm{m}, \mathrm{m}\rangle:$
$\hat{\chi} \propto \hat{C}_{m m}$
$\mathrm{J}=\hat{\boldsymbol{\sigma}} \mathrm{E}$,
$\hat{C}_{J J}=\left\langle\mathrm{J}_{\mathrm{x}}, \mathrm{J}_{\mathrm{x}}\right\rangle:$
$\hat{\sigma} \propto \hat{C}_{J J}$

2. The Essence of the Coulomb Drag Effect.

Pogrebinskii '77, Gramila et al. '91, Eisenstein '92

Transresistivity $\quad \rho_{21}=\left(V_{2} / J_{1}\right)_{J_{2}=0} \quad \rho_{21}=-\sigma_{21} / \operatorname{det} \hat{\sigma}$

2. The Essence of the CDE (Cont'd).

J_{2}

Particle-hole
asymmetry

$$
\sigma_{21}=\mathrm{i} \omega^{-1}<\mathrm{J}_{2}, \mathrm{~J}_{1}>_{\omega \rightarrow 0}
$$

2. The Essence of the CDE (Cont'd).

$$
\begin{aligned}
& \varepsilon_{k}=v_{F}\left(k-k_{F}\right)+ \\
& +(2 m)^{-1}\left(k-k_{F}\right)^{2}+\ldots
\end{aligned}
$$

Particle-hole
asymmetry

$$
\sigma_{21}=i \omega^{-1}<J_{2}, J_{1}>_{\omega \rightarrow 0}
$$

2. The Essence of the CDE (Cont'd).

$$
\sigma_{21}=\mathbf{i} \omega^{-1}<J_{2}, J_{1}>_{\omega \rightarrow 0}
$$

2. The Essence of the CDE (Cont'd).

$$
\begin{aligned}
& \varepsilon_{k}=v_{F}\left(k-k_{F}\right)+ \\
& +(2 m)^{-1}\left(k-k_{F}\right)^{2}+\ldots
\end{aligned}
$$

Particle-hole
asymmetry

$$
\sigma_{21}=\mathbf{i} \omega^{-1}<\mathrm{J}_{2}, \mathrm{~J}_{1}>_{\omega \rightarrow 0}
$$

$$
\begin{gathered}
U_{21}(q, \omega)=\frac{\pi e^{2}}{\varkappa^{2}} \frac{q}{\sinh q d} \quad \varkappa d \gg 1 \\
\rho_{21}=\frac{1}{e^{2}} \frac{\pi^{2} \zeta(3)}{16}\left(\frac{T}{E_{F}}\right)^{2} \frac{1}{\varkappa^{2} k_{F}^{2} d^{4}}
\end{gathered}
$$

2. The Essence of the CDE: Diff's and Sim's.

- Phonon Drag: phonons drag electrons when the temperature gradient is applied. FD manifests itself in thermopower.
- "Mixed" transport coefficients. Examples:

Hall coefficient $\left\langle\mathrm{J}_{\mathrm{x}} \mathrm{J}_{\mathrm{y}}\right\rangle$ is small in $\left(\omega_{c} \tau\right)$;
Thermonower $<\mathbf{J}_{\mathrm{k}} \mathbf{J}_{\epsilon}>$ is small in $\left(\boldsymbol{T} / \boldsymbol{E}_{\boldsymbol{F}}\right)$ due to PHA; Transconductivity $\left.<\mathrm{J}_{2} \mathrm{~J}_{1}\right\rangle$ is small in $\left(\boldsymbol{T} / \boldsymbol{E}_{\boldsymbol{F}}\right)^{2}$ due to PHA.

- Interaction induced corrections to $<\mathrm{J}_{\mathrm{x}} \mathrm{J}_{\mathrm{x}}>$.

Aslamasov-Larkin contribution is smaller than Altshuler-Aronov one. However, now it is not a correction but the entire effect!

3. Detailing the Effect: Diffusion.

Typically, $\left(\omega \tau<1, q l<1, l_{\varphi}<l\right) \rightarrow T \tau<1$. For CDE $q d<1$.

$$
U_{21}(q, \omega)=\frac{\pi e^{2} q}{\varkappa^{2} \sinh q d}\left(\frac{-i \omega+D q^{2}}{D q^{2}}\right)^{2}
$$

$$
\rho_{21}=\frac{1}{e^{2}} \frac{\pi^{2}}{12}\left(\frac{T}{E_{F}}\right)^{2} \frac{1}{\left(\varkappa d k_{F} l\right)^{2}} \ln \frac{T_{0}}{T} .
$$

Thus, diffision dominates the drag only at vanishingly small T.
3. Detailing ...: Spin CDE and Correlated Impurities.

Gornyi et al. '99: experimental set up of correlated impurities in DQW

Impurity potential correlations. Quantum coherence.

3. Detailing ...: Spin CDE and Correlated ... (Cont'd).
(a)

(b)

Anomalous Maki-Thomson processes.
Low-T enhancement.

$$
\begin{gathered}
\rho_{21}=\frac{1}{e^{2}} \frac{\pi^{4}}{24} \frac{\ln \left(T \tau_{g}\right)}{\left(k_{F} d\right)^{4}(\varkappa l)^{2}}, \quad \tau_{g}^{-1}<T<\tau_{t r} \\
\rho_{21}=\frac{1}{e^{2}} \frac{\pi^{4}}{6} \frac{\left(T \tau_{g}\right)^{2}}{\left(k_{F} d\right)^{4}(\varkappa l)^{2}}, \quad T<\tau_{g}^{-1}
\end{gathered}
$$

τ_{g} measures the mismatch of random potentials in two layers.
3. Detailing the Effect: Interaction and Temperature.

- The interlayer interaction is effectively static and screened. Fermiliquid result T^{2}.
- The interaction is retarded (dynamic) but overdamped. It excites the particle-hole pairs from the continuum. Linear-in- \boldsymbol{T} behavior.
- T^{3} temperature dependence is due to interlayer plasmon modes.
- High-temperature regime wherein the density fluctuations could be treated hydrodynamically. Transresisitvity decays as \boldsymbol{T}^{-1}.

4. Extensions and Exotics.

CDE and SCDE between nanowires (including chiral LL's)
CDE of massless Dirac fermions (graphene and TI)
Interlayer macroscopic coherence (excitonic insulator, QH states)
CDE of composite fermions (FQHE)
Giant mesoscopic fluctuations of transconductance
DE of disordered bosons
Residual CDE (third-order)
CDE in low and intermediate magnetic fields
SCDE in presence of polarization and density mismatch
Phonon-mediated CDE
CDE between different fermionic systems
CDE in presence of tunneling briges

Conclusions.

We overview the Coulomb Drag Effect in 2DEG.
Over the past two decades, the Coulomb Drag Effect became a powerful tool for studying the intrinsic properties of interacting disordered low-dimensional electron systems.

Narozhny, Levchenko, Rev. Mod. Phys. '16

THANK YOU FOR YOUR PATIENCE !!!

